ALARM

Alarm

- An alarm is a report of an abnormal process event that requires an operator to take action.
- Categories of alarms

Safety – catastrophic failure, loss of life

Operational – plant or equipment failure/trip

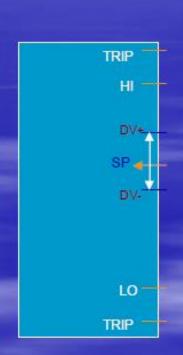
Information – process inefficiencies

Objectives of a good alarm system

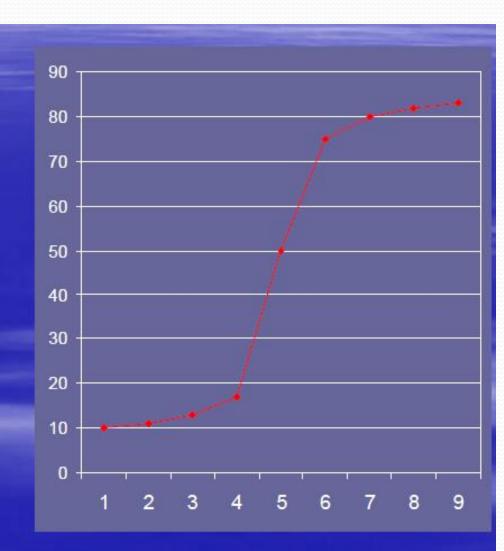
- Presents only useful & relevant alarms
- Each alarm should have a defined response
- Clearly identifies the problem
- Allows adequate time for response
- Frequency: < 6 alarms per hour, steady state
- < 60 alarms per hour, plant upset

Alarm System Design

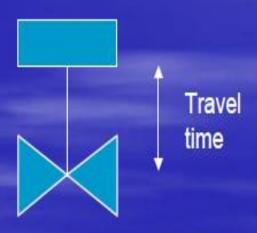
- General
- Design alarm strategy before configuration commences
- Create rules for assigning priorities
- Consider system defaults


Considerations in alarm design

- Purpose of the alarm
- Response required by the operator
- Consequences of not responding to the alarm
- Time required for the operator to respond
- Effectiveness of operator response


What should **not** be an alarm

- Events that do not require an operator response
- Events that an operator cannot respond to
- Confirmation of actions taken by the operator
- Duplicate signals


- Absolute: eg, high/low alarms
 - Simple
 - Inflexible *
- Deviation: deviation of PV from setpoint
 - Must be suppressed during plant disturbance

- Rate of change
 - Predictive
 - Susceptible to noise

- Discrepancy Alarms
 - Motor/valve travel time
 - Degradation of equipment can lead to spurious alarms

- Retriggering alarms
 - Re-alarm if alarm not cleared after a period of time.
- Calculated alarms
 - Powerful & flexible
 - Possible with modern control systems
 - Dynamic alarm parameters

Alarm Priority

- Determined by:
 - severity of consequences
 - and time taken to take action
- Priority bands: Maximum 4
 - Critical (in safety system only)
 - High
 - Medium
 - Low
 - Logging (does not count in the maximum number of bands)

Create a set of rules to determine alarm priority to ensure consistency of alarm response.

Alarm Priority

Example 1

Priority	Safety Risk	Economic Loss	Environmental Risk
Critical	> 0.1	> \$100,000	> 0.1
High	> 0.01	> \$10,000	> 0.01
Medium	> 0.001	> \$1,000	> 0.001
Low	< 0.001	< \$1,000	< 0.001

Example 2

Priority	Operational	
Critical	Total loss of plant	
High	Loss of plant area	
Medium	Loss of equipment → loss of production	
Low	Loss of equipment without loss of production	

Alarm Priority

- Alarm priorities provide ways of presenting alarms of different levels of importance to the operator;
 - Audible tone
 - Colour
 - Acknowledgment requirements

Design alarm strategy:

- Performance Objective
- Priority allocation rules
- Rules for determining critical alarms (to be handled by safety system)
- Design of alarm interface to operator
- Alarm configuration
 - Setpoints
 - Hysteresis
- Rules and policies for alarm suppression
- Change management
- Alarm review management and policy